Home | People | News | Undergrad | Graduate | Courses | Learning Resources | Research | Initiatives | Projects | Search
UCSB English Dept. Home Page
Customized Views:
  Course Materials
Alan Liu
Fredrick Winslow Taylor
On "Scientific Management"
 


from The Principles of Scientific Management (originally pub. 1911), collected in Frederick Winslow Taylor, Scientific Management (1947; rpt. Westport, Conn.: Greenwood, 1972), pp. 77-85:

Bricklaying is one, of the oldest of our trades. For hundreds of years there has been little or no improvement made in the implements and materials used in this trade, nor in fact in the method of laying bricks. In spite of the millions of men who have practised this trade, no great improvement has been evolved for many generations. Here, then, at least, one would expect to find but little gain possible through scientific analysis and study. Mr. Frank B. Gilbreth, a member of our Society, who had himself studied bricklaying in his youth, became interested in the principles of scientific management, and decided to apply them to the art of bricklaying. He made an intensely interesting analysis and study of each movement of the bricklayer, and one after another eliminated all unnecessary movements and substituted fast for slow motions. He experimented with every minute element which in any way affects the speed and the tiring of the bricklayer.

He developed the exact position which each of the feet of the bricklayer should occupy with relation to the wall, the mortar box, and the pile of bricks, and so made it unnecessary for him to take a step or two toward the pile of bricks and back again each time a brick is laid.

He studied the best height for the mortar box and brick pile, and then designed a scaffold, with a table on it, upon which all of the materials are placed, so as to keep the bricks, the mortar, the man, and the wall in their proper relative positions. These scaffolds are adjusted, as the wall grows in height, for all of the bricklayers by a laborer especially detailed for this purpose, and by this means the bricklayer is saved the exertion of stooping down to the level of his feet for each brick and each trowelful of mortar and then straightening up again. Think of the waste of effort that has gone on through all these years, with each bricklayer lowering his body, weighing, say, 150 pounds, down two feet and raising it up again every time a brick (weighing about 5 pounds) is laid in the wall! And this each bricklayer did about one thousand times a day.

As a result of further study, after the bricks are unloaded from the cars, and before bringing them to the bricklayer, they are carefully sorted by a laborer, and placed with their best edge up on a simple wooden frame, constructed so as to enable him to take hold of each brick in the quickest time and in the most advantageous position. In this way the bricklayer avoids either having to turn the brick over or end for end to examine it before laying it, and he saves, also, the time taken in deciding which is the best edge and end to place on the outside of the wall. In most cases, also, he saves the time taken in disentangling the brick from a disorderly pile on the scaffold. This "pack" of bricks (as Mr. Gilbreth calls his loaded wooden frames) is placed by the helper in its proper position on the adjustable scaffold close to the mortar box.

We have all been used to seeing bricklayers tap each brick after it is placed on its bed of mortar several times with the end of the handle of the trowel so as to secure the right thickness for the joint. Mr. Gilbreth found that by tempering the mortar just right, the bricks could be readily bedded to the proper depth by a downward pressure of the hand with which they are laid. He insisted that his mortar mixers should give special attention to tempering the mortar, and so save the time consumed in tapping the brick.

Through all of this minute study of the motions to be made by the bricklayer in laying bricks under standard conditions, Mr. Gilbreth has reduced his movements from eighteen motions per brick to five, and even in one case to as low as two motions per brick. He has given all of the details of this analysis to the profession in the chapter headed "Motion Study," of his book entitled "Bricklaying System," published by Myron C. Clerk Publishing Company, New York and Chicago; E. F. N. Spon, of London.

An analysis of the expedients used by Mr. Gilbreth in reducing the motions of his bricklayers from eighteen to five shows that this improvement has been made in three different ways:

First. He has entirely dispensed with certain movements which the bricklayers in the past believed were necessary, but which a careful study and trial on his part have shown to be useless.

Second. He has introduced simple apparatus, such as his adjustable scaffold and his packets for holding the bricks, by means of which, with a very small amount of cooperation from a cheap laborer, he entirely eliminates a lot of tiresome and time consuming motions which are necessary for the bricklayer who lacks the scaffold and the packet.

Third. He teaches his bricklayers to make simple motions with both hands at the same time, where before they completed a motion with the right hand and followed it later with one from the left hand. For example, Mr. Gilbreth teaches his brick layer to pick up a brick in the left hand at the same instant that he takes a trowelful of mortar with the right hand. This work with two hands at the same time is, of course, made possible by substituting a deep mortar box for the old mortar board (on which the mortar spread out so thin that a step or two had to be taken to reach it) and then placing the mortar box and the brick pile close together, and at the proper height on his new scaffold.

These three kinds of improvements are typical of the ways in which needless motions can be entirely eliminated and quicker types of movements substituted for slow movements when scientific motion study, as Mr. Gilbreth calls his analysis, time study, as the writer has called similar work, are applied in any trade.

(pp. 77-81)


Why is it, in a trade which has been continually practised since before the Christian era, and with implements practically the same as they now are, that this simplification of the bricklayer's movements, this great gain, has not been made before?

It is highly likely that many times during all of these years individual bricklayers have recognized the possibility of eliminating each of these unnecessary motions. But even if, in the past, he did invent each one of Mr. Gilbreth's improvements, no bricklayer could alone increase his speed through their adoption because it will be remembered that in all cases several bricklayers work together in a row and that the walls all around a building must grow at the same rate of speed. No one bricklayer, then, can work much faster than the one next to him. Nor has any one workman the authority to make other men cooperate with him to do faster work. It is only through enforced standardization of methods, enforced adoption of the best implements and working conditions, and enforced cooperation that this faster work can be assured. And the duty of enforcing the adoption of standards and of enforcing this cooperation rests with the management alone. The management must supply continually one or more teachers to show each new man the new and simpler motions, and the slower men must be constantly watched and helped until they have risen to their proper speed. - All of those who, after proper teaching, either will not or cannot work in accordance with the new methods and at the higher speed must be discharged by the management. The management must also recognize the broad fact that workmen will not submit to this more rigid standardization and will not work extra hard, unless they receive extra pay for doing it.

All of this involves an individual study of and treatment for each man, while in the past they have been handled in large groups.

The management must also see that those who prepare the bricks and the mortar and adjust the scaffold, etc., for the bricklayers, cooperate with them by doing their work just right and always on time; and they must also inform each bricklayer at frequent intervals as to the progress he is making, so that he may not unintentionally fall off in his pace. Thus it will be seen that it is the assumption by the management of new duties and new kinds of work never done by employers in the past that makes this great improvement possible, and that, without this new help from the management, the workman even with full knowledge of the new methods and with the best of intentions could not attain these startling results.

Mr. Gilbreth's method of bricklaying furnishes a simple illustration of true and effective cooperation. Not the type of cooperation in which a mass of workmen on one side together cooperate with the management; but that in which several men in the management (each one in his own particular way) help each workman individually, on the one hand, by studying his needs and his shortcomings and teaching him better and quicker methods, and, on the other hand, by seeing that all other workmen with whom he comes in contact; help and cooperate with him by doing their part of the work right and fast.

The writer has gone thus fully into Mr. Gilbreth's method in order that it may be perfectly clear that this increase in output and that this harmony could not have been attained under the management of "initiative and incentive" (that is, by putting the problem up to the workman and leaving him to solve it alone) which has been the philosophy of the past. And that his success has been due to the use of the four elements which constitute the essence of scientific management.

First. The development (by the management, not the workman) of the science of bricklaying, with rigid rules for each motion of every man, and the perfection and standardization of all implements and working conditions.

Second. The careful selection and subsequent training of the bricklayers into first-class men, and the elimination of all men who refuse to or are unable to adopt the best methods.

Third. Bringing the first-class bricklayer and the science of bricklaying together, through the constant help and watchfulness of the management, and through paying 'each man a large daily bonus for working fast and doing what he is told to do.

Fourth. An almost equal division of the work and responsibility between the workman and the management. All day long the management work almost side by side with the men, helping, encouraging, and smoothing the way for them, while in the past they stood one side, gave the men but little help, and threw on to them almost the entire responsibility as to methods, implements, speed, and harmonious cooperation.

Of these four elements, the first (the development of the science of bricklaying) is the most interesting and spectacular. Each of the three others is, however, quite as necessary for success.

It must not be forgotten that back of all this, and directing it, there must be the optimistic, determined, and hard-working leader who can wait patiently as well as work.

 

 



From Hearings Before Special Committee of the House of Representatives to Investigate the Taylor and Other Systems of Shop Management Under Authority of House Resolution 90 (1911-12), collected under the title Taylor's Testimony Before the Special House Committee in Frederick Winslow Taylor, Scientific Management (1947; rpt. Westport, Conn.: Greenwood, 1972), p. 27:

Now, in its essence, scientific management involves a complete mental revolution on the part of the workingman engaged in any particular establishment or industry—a complete mental revolution on the part of these men as to their duties toward their work, toward their fellow men, and toward their employers. And it involves the equally complete mental revolution on the part of those on the management's side—the foreman, the superintendent, the owner of the business, the board of directors—a complete mental revolution on their part as to their duties toward their fellow workers in the management, toward their workmen, and toward all of their daily problems. And without this complete mental revolution on both sides scientific management does not exist.

That is the essence of scientific management, this great mental revolution. Now, later on, I want to show you more clearly what I mean by this great mental revolution. I know that perhaps it sounds to you like nothing but bluff-like buncombebut I am going to try and make clear to you just what this great mental revolution involves, for it does involve an immense change in the minds and attitude of both sides, and the greater part of what I shall say today has relation to the bringing about of this great mental revolution.

 
Home | People | News | Undergrad | Graduate | Courses | Learning Resources | Research | Initiatives | Projects | Search
UCSB English Dept. Home Page
* Disclaimer | Copyright | Credits | About this Site * Site Map | Top | UCSB Home * Webcontact | Page updated: 9/25/03