Streamlining the Eye: Speed Reading and the Revolution of Words, 1870–1940

Sue Currell

This chapter examines the development of new technologies that aimed to measure, and then enhance, the performance of the reader in response to a proliferation of mass media in the nineteenth and early twentieth centuries. In this sense, then, what is “residual” is not the media itself but the traces—or echoes—that are imprinted on the human body or within ideological conceptions of the human, even when the technology or media itself has disappeared or diminished. Despite this, these residual traces are constantly threatening to reappear in everyday culture, and even today they become emergent with the appearance of new technologies and media. Knowing the origins of these residual discourses concerning the human allows us to see their appearance less as a natural occurrence, one that emerges out of technological transitions, and more as a continuation of the historically determined past, revisited and recycled in the present. One example of this is clearly visible in recent concerns over the future of the book and the reader in a digital age, a concern that replicates and in the present. One example of this is clearly visible in recent concerns over the future of the book and the reader in a digital age, a concern that replicates and recycles earlier concerns that are examined in more detail in the following. In this way this study traces the residual in the present by exposing the concerns of the dominant in the past.

Although hardly a new technology, new perceptions about books began to emerge in the late nineteenth century as new forms of communication evolved in an environment of rapid industrialization. By 1924, educators, writers, and literary critics had begun to adopt an increasingly mechanistic view of books, illustrated by the claim made by I. A. Richards that “a book is a machine to think with.” To critics and linguists like Richards, gaining maximum efficiency from this machine—eliciting the optimum meaning, significance, and usefulness from the text—could ultimately solve the problem of universal communication that linguists and literary critics pursued with scientific ardor in the first half of the twentieth century. Alone, however, the machine/book could not produce effective thought, and the instructions to operate it (that is, literary criticism) would ensure that the machine ran smoothly. Underlying this new perception of books was thus the implication that the reader was an inefficient operator of the machine. To put it another way, without the trained operator the machine was unusable/illlegible.

The success of books as a form of communication for the twentieth century thus appeared to rely on the improvement of readers’ abilities, skills that would enable them to acquire and retain the information that books contained. By the mid-twentieth century, the “mechanization” of reading had evolved into a huge business that focused on training to increase reading pace, often with the aid of machines. This chapter looks at how this discourse of reading efficiency came about and how it led to a new type of reading advice that was completely at odds with theories of effective reading a century earlier, making faster reading a requisite and symbol of the modern American into the twenty-first century.

Prior to the industrial revolution in America, instruction books on reading and self-improvement consisted of religious primers or spellers. Improvement in reading mostly involved monitoring the moral and intellectual quality of what was read, along with painstaking study that would make “difficult” reading more easily understood. While these books addressed personal improvement, others attempted to reform language itself in order to standardize communication and enable readers to benefit more fully from what they read. In a multilingual society this improvement was fundamental to national success and effective business exchange. Thus, by the late eighteenth century, a “debabelization” process was already under way in America to standardize the various spellings and pronunciations of the newly independent nation, aiming to reduce “a dozen local dialects to one harmonious language.”

Reading speed, however, was not part of this standardization. In fact, until the early twentieth century, rapid reading “as an exercise in skipping” was associated with vulgarity and a trivialization of literature that had resulted from what Henry James termed in 1884 as the “superabundance” of fiction writing. Despite lamenting the impossibility of reading all the literary productions of the age, English writer Thomas de Quincey wrote that “rapid reading... belongs to the vulgar interest of the novel.” It is a delusion of the mind, he claimed, to think “that it is reading to cram himself with words, the bare sense of which can hardly have time to glance, like the lamps of a mail coach, upon his hurried and bewildered understanding.”

Incorporating the same metaphor of the eye as a lamp that hurried over the page, author and educator William Chauncey Fowler also counseled against rapid reading in 1876: “In rapid reading, [the mind] is nearly in the same state as yours when you are whirled through a country in a post-coach or a railroad-car. How much do you know of that country in the one case? How much do you know of the book in the other?” Reading too much and thinking too little, readers were “incapacitated for high achievements” because “addicted to mental gluttony, [the reader was] thus suffering from mental repletion.” The “living lexicon” or “walking encyclopedia,” like the overstuffed Victorian parlor, was encumbered by culture in the face of acceleration. Despite this, Fowler could only suggest slow reading and better selection of texts (the assumed role of the critic) as the way to “transfer the views of your author
to your own mind." New designs for the mind were emerging, however, that suggested ways of increasing speed and acquisition of knowledge. These changes in perceptions over reading were central to a modern formation of the reading/viewing subject as well as the emergence of new cultural forms of expression and entertainment.9

By the early twentieth century, concerns with the overstuffed Victorian mind transformed with the introduction of new technologies. Industrial expansion and technological invention after the Civil War in the United States created two new circumstances that profoundly affected reading: a huge proliferation of printed materials and a massive expansion and change in public readership. Unprecedented immigration created a new working class, many of whom were not native English speakers, and industrial technology appeared to speed up the pace of everyday life. Understanding reception and controlling communication was fundamental to the success of this new national formation.

Along with this material change in social organization, philosophical changes in visual knowledge coming out of experimental psychology dramatically altered ideas about the observer/reader. As visual historian Jonathan Crary has detailed, new discoveries about vision from the early 1800s dramatically changed ideas about the transmission and reception of reality, creating "a condition of possibility both for the artistic experimentations of modernism and for new forms of domination."10 By the second half of the nineteenth century, studies in language, perception, and mental functioning took on an urgency that paralleled the imperialistic drive toward a unitary national identity that characterized American foreign and domestic policy at this time.11 Experimental psychology quickly emerged in the United States "with a vigor unmatched elsewhere."12 The impact of industrial methods on the study of philosophy and psychology led to a rationalization of the production of knowledge that required standardized methods and instruments, along with a standardization "of the experimental human subject as an introspecting instrument."13 Epitomized by his book Psychology and Industrial Efficiency in 1913, American psychologists such as Hugo Münsterberg, president of the American Psychological Association, gained legitimacy and funding for experimental psychology, promoting it as a useful tool in the new industrial order.

At the outset, however, experimental psychologists were more concerned with understanding, recording, and measuring mental processes than with working with industry. In the early 1800s, reaction-time experiments that extended philosophical enquiries began to connect the human subject to mechanical apparatus; using equipment such as chronoscopes, stereoscopes, tachistoscopes, polygraphs, kymographs, sphygmometers, dynamometers, and telegraph keys, psychologists attempted to measure human responses to stimuli scientifically.14 For optical measurements, new machinery was rapidly developed to determine how fast the eye responded to stimuli such as color, letters, words, or objects. These attempts to measure reaction time had a huge impact on ideas about the transmission of language and meaning through printed media, ideas that transformed an understanding of reality, textuality, and the observing/thinking subject. To many, the psychology of reading and perceptual processes appeared to offer a rich seam of information that could open up the doors to human consciousness and answer questions about human perception, meaning, and reality that had been central issues of philosophical inquiry for centuries. Thus Edmund Huey wrote of the significance that the psychological understanding of reading processes held for modernity:

And so to completely analyze what we do when we read would be the acme of a psychologist's achievements, for it would be to describe very many of the most intricate workings of the human mind, as well as to unravel the tangled story of the most remarkable specific performance that civilization had learned in all its history.15

Experiments to crack open the mysteries of the reading process appeared to have advanced in 1879 when French ophthalmologist Louis Émile Javal succeeded in measuring eye movement with electronics. Prior to this, only rough estimates had been possible, with experiments made using an observer to count movements whose own eyes were far from accurate as measuring instruments. Javal's experiment was carried out by connecting the eyelid to an electric circuit and then counting the series of sounds produced in a microphone by each eye movement. Javal noted that the movements were discontinuous and fragmented and didn't flow along the line of words in the correct order as would be expected, indicating for the first time that the way the human mind responded to language was less linear than structural.16 This new understanding of perception not only created new art forms but altered ideas about the structure of language and communication—opening up the possibilities for new structural and relativistic knowledge that has dominated theories of language since Ferdinand de Saussure taught his course in general linguistics in the early twentieth century.

Around the same time that Javal was experimenting with the motion of the eye, French physiologist Étienne-Jules Marey was performing experiments to record movement that would combine medical with cinematic history. As an experimental psychologist, Marey invented many instruments used by experimental psychologists, including the chronograph in 1888, out of which the cinematograph was eventually developed.17 Marey's experiments with motion and speed paved the way for both the science of experimental psychology and cinema. The promise of Javal's experiment was not only to reveal the secret of the reading mind, but had wider implications for understanding how society functioned as a whole, with psychologists starting to apply their theories to form an understanding of the group and social psychology of the masses. How the mind of the mass viewing public functioned was a central concern at this time, a concern only enhanced by these parallel developments in nascent visual technologies that were to eventuate in a new mass media. New psychometric measurements and machinery, it was hoped, would provide a scientific picture of the functioning of the mind—less a snapshot of consciousness than a motion picture of it.

It was, however, the statistical accumulation of data that made it possible to map the limits and capabilities of the modern mind. Charles Darwin's cousin, Sir Francis Galton, had been studying individual and racial differences since the
In 1893, after consultation with Galton, Joseph Jastrow established the Section of Psychology at the Columbian Exposition in Chicago, where he tested thousands of individuals with the help of graduate student volunteers amassed for the occasion. Using Galton’s Anthropometric Laboratory as a model, this was the first public stage for experimental psychology in America, heralding psychometrics as a major new science as well as a new forum for transmitting knowledge about human subjectivity. In a series of psycho-physical tests lasting two hours, fairgoers could be tested with the latest equipment and methods to ascertain how “average” or normal they were, in relation to the accumulated data that the scientists had already acquired. Tests included judging weights and lengths, sensory acuteness and motor abilities, and included reading tests where:

The subject looks at a vertical screen where, filing past an opening, are many cards displaying words and numbers: he must afterward write down all the figures and words that he can remember having seen, and in the same order as they were presented, if possible. This test indicates the extent of memory and the time of presentation that is sufficient for exact perception.

Other tests measured the time taken to transcribe words and write another, suggested by association, or to identify previously seen words within a list of random words or images mixed in together. An experiment such as this, Henry de Vargny wrote, “gives some indication of the speed of perception and the vividness of memory.” Experimental psychology combined with the new science of statistics thereby played a crucial role in beliefs about improvement in reading and enabled the reading subject and reading speeds to be measured in a comparative way on a national scale. While personal improvements in the reading process remained important to educators, the desire to apply these improvements more widely to improve national educational standards emerged out of such research. As entertainment and performance, the public nature of these tests also offered a way of measuring oneself and others in relation to the crowd, a feature of mass culture that reemerged in twentieth-century self-help popular psychology.

In 1898, persisting with more accurate measurement of eye movements, American psychologist Eugene Delabarre developed a plaster of Paris “contact lens” attached to a photographic recording device on a rotating kymograph (Figure 18.1). Using this, Edmund Huey carried out experiments to compare reading horizontal with vertical lists of words. These experiments indicated what technical adjustments could be made to words, text, and layout to facilitate the productivity of reading and “skimming.” Experiments with narrow columns and page layout showed how certain styles forced the eye to make more movements, thus causing it to tire quickly. Words were “cut up” or the page, or “disarranged” in a variety of ways, to see how quickly sense could be made of partial words (or partial word images). Huey’s tests showed that anticipation and association made reading faster and that words (even sentences) were not read in full or in the exact order they appeared on the page. What all this
indicated was that rationalized reading was not in fact a speeding up the reading of individual words but training the mind to anticipate the structures of language and make associative connections more quickly.²⁷ While changing the understanding of language reception it was quickly perceived that the reading subject could also be transformed by new processes of learning. Educational psychologists saw the pedagogical benefits of such knowledge and aimed to use it to “speed up” and improve learning abilities. In 1894, Adelaide Abell conducted experiments with students in a psychology class at Wellesley College that showed it “is evidently possible to apprehend almost simultaneously the words in a line, just as one reads by words instead of letters.” Experiments confirmed Javal’s research that the mind worked with structures of language rather than with units, and that simultaneity of perception was not only possible, it was now seen as preferable, and could even be an aid, rather than a hindrance, to comprehension. “The fundamental condition of swift reading,” she concluded, “is undoubtedly quickness of association; so that any attempt to improve reading ability must include the effort to increase the rapidity of association by repeating and multiplying associations and by intensifying interest and attention.” Attention, a problem that was central to late nineteenth-century fears over cultural decline, was thereby shown not to decrease with acceleration but to sharpen or improve—a significant discovery for the transition to modern reading.²⁸ Slow readers and readers who read one word at a time, the study found, could comprehend less, rather than more, and often hindered their speed of understanding by articulating words.

In the intervening years since Fowler had counseled against rapid reading, experiments in psychology and psychometrics had thus shown that to increase reading speed was “an evident pedagogical requirement.”²⁹ Abell summarized that “though every individual has probably his maximum rate of reading, determined by his natural quickness of apprehension and association, it is yet possible and desirable to some extent to increase the ordinary rate.”³⁰ This conclusion was to usher in a new era of speed reading training and educational psychometrics that could differentiate “slow” learners from the rest. As a new sign of success, reading rapidly would signify less a “novelistic” superficiality than a streamlined mind, trimmed and trained for modern times.

Despite this, problems encountered by scientists revealed how difficult they found it to make exact measurements of the mysterious process of reading. In reaction-time tests, the time lapse between seeing and reporting remained problematic. And while experimenters strove to standardize machinery; experimental subjects were rarely so accommodating. Likewise, most experiments were undertaken on graduate students, where the a priori standard of reading and education naturally had great effect on comprehension and reading speed—and experiments merely reflected these social and educational differences.³¹ Although the limited number of subjects used in experiments also prevented experimenters from establishing overall averages or norms of movements, more problematic were the discoveries of psychologists, especially Sigmund Freud, that the mind could “misread” and misperceive. With the publication of The Psychopathology of Everyday Life in 1901, Freud illustrated that the mind could misread what the eye saw, showing how it creatively edited and transcribed the meaning of the perceived world or the text on a page. To Freud, such malfunctions could reveal the operation of the subconscious, but to others they illustrated the kind of personal weaknesses that made self-control, personality testing, and training even more essential for the industrial order.

The conditions of the experimental lab, Wesleyan professor Raymond Dodge noted, also altered the way the body would respond in a “natural, or unobserved environment,” so that vision in darkened rooms thus “modified the conditions of attention.”³² Even Delabarre’s contact lens, heralded as a major breakthrough, was problematic in that it was not known how the equipment might affect the eye movements (not to mention the effect of the anesthetizing cocaine that was used to numb the pain of the procedure). Dodge claimed to improve on previous experiments with the use of photographic film rotated on brass rails where reflections from the eye acted as inscriptors on a moving photographic film—literally making the eye write a record of its movement onto film.³³ Despite the problems they encountered, and their own work that established the instability of the perceiving subject, experimental psychologists persisted with the goal of accurate reading measurements. By measuring eye movements, psychology aimed to become an exact science of the mind. Such experiments would unfold the mystery of the age—the modern response to stimuli—and give mathematical exactitude to how effectively, for example, a billboard advertisement might be perceived while passing at a certain distance and velocity from an electric tram. Experiments on eye movements grew alongside technologies developed by Marey, and then Edward Muybridge, to record motion in animals, so that by 1905, researchers acknowledged the generosity of the Edison company in...
providing assistance with kinetoscope cameras to make more accurate records of eye movements. Educational psychologists Charles Judd, Henry McAllister, and William Steele undertook experiments with a hand-cranked camera, developing a new paraffin contact lens that improved on Delabarre's. The observing subject's head was held in a fixed position and wire glasses were used as points of reference—all in the hope that this would eliminate some of the inaccuracies of previous experiments (Figure 18.2). Such experiments at the forefront of the silent film era may also have been of some benefit to the Edison company, offering a sense of how viewers "read" images and on-screen intertitles, which had begun to appear in moving picture "narratives."

Thus it was shown that reading could be measured and improvements in the individual could be recorded or even transformed by technology. The Taylorization of the workplace and the introduction of time and motion studies using photography and motion pictures by Lillian and Frank Gilbreth a few years later was thus anticipated and explored in studies of reading and perception around the turn of the century. As in the factory or workroom, improving reading appeared to involve the preservation of energy through increased efficiency of the machine and the elimination of unnecessary, or wasteful, movement.

Because reading was not a "natural" function of the eye, such training to improve techniques would prevent certain "forms of degeneration" such as the "very evident inheritance of... myopia and nerve exhaustion... [that] warns us of the danger of race degeneration from this source." Psychometric tests indicated to educators not just the level of the reader's abilities, but the extent to which they needed to be "improved." So despite the belief that reading capacity was widely inherited, Walter Dearborn also claimed that reading rates and mental acuity could be improved by retaining the mind to function in new, and more modern, ways. "Bad form in reading is doubtless as distressingly common as bad form in swimming, skating or tennis," he claimed, and is established through poor educational techniques that were based on outmoded ideas about the reading process.

Theories of degeneration and fatigue showed that the body and mind was as prone to mental inefficiency and loss of energy as any other machine. Fears that muscular eye fatigue also represented atavism or racial deterioration were common enough by 1901 for physical culture guru Bernarr Macfadden, mostly famous for his bodybuilding and dietary advice, to publish the self-help book Strong Eyes. Macfadden recommended eye-training exercises that were similar to the exercises that he recommended for other muscular development, claiming that no one needed to wear glasses if they followed his exercise and dietary regimen. With many reprints over the next few decades, and a new title in 1926 of Strengthening the Eyes: A Course in Scientific Eye Training, the book was fundamental to notions that the "eye grasp" could be physically improved at will. Notably, his regime offered the chance to prevent mental flabbiness and weakness through exercising the eye muscles. Reading need not result in nerve exhaustion, he noted; neither did watching movies, which could even be of great benefit in improving vision if frequent attendance was used for practicing his exercises. "If properly used," he claimed, the eye "is fully able to withstand all the strains of modern life."

Macfadden thus offered a technoscientific way of strengthening the eye, using the fast moving film images to increase the agility and speed of the eye, counteracting the common fear that new technologies weakened reading ability. The wider application of such exercises and the improvement of reading to keep up with modern transformations not only claimed to prevent mental flabbiness but were seen as fundamental to improving civilization itself. In his 1908 book The Psychology and Pedagogy of Reading, Edmund Huey considered the wider social implications of improvement in reading in a final chapter titled "The Future of Reading and Printing: The Elimination of Waste." "Improvement in the page or the method of reading means the rendering of a great service to the human race," he wrote, and further that:

Human thought has been busy rationalizing. It has rationalized the traditional methods of transportation and locomotion until we have the steam...
Huey claimed that the scientific tests on reading and the eye had shown that the printed letter could be streamlined and rationalized to maximize reading efficiency and to prevent the waste of excessive eye movements and energy. The future of reading, he claimed, would involve, possibly, a new alphabet, type, methods of reading, phonetic spelling, pictographs, and abandoning archaisms that did nothing but impede the modern reader. "We are likely," he wrote, "soon to consider the possibilities of a total rearrangement of our printed symbols, in the interest of economy of time, energy, and effectiveness in getting thought from the page." Reading in vertical columns may also add to the economy of reading, "eliminating our own very evident wastes." In fact, new "telegraphic" methods of communicating may eventually override the need for reading, he predicted, because technologies would enable authors to "talk his thought directly into some sort of graphophone-film book which will render it again to listeners."

The future of the book, however, relied on a rationalization of the reader as well as the creation of new forms of texts. Speeding up brain function was seen as essential in the prevention of racial degeneration, and by the 1920s, eugenacists had widely adopted the precepts of experimental psychology in the form of mass tests to measure intellectual ability, or IQ. Mental training was increasingly perceived as a way to "Taylorize" white-collar work and the key to business success. On a national scale, the testing of mental agility became fundamental to the implementation of immigration laws that would sort the "weak-minded" from the strong, and by 1925, colleges were beginning to introduce speed reading training as part of their general educational program.

The discoveries of psychologists reached an even wider mass market with the publication of professor of journalism Walter B. Pitkin's The Art of Rapid Reading: A Book for People Who Want to Read Faster and More Accurately. Written in 1929, for the man who is "dissatisfied with the amount of reading he does in the course of a year," the importance of keeping up to speed with the rapid developments in modern America was, he claimed, immense. By reading his book and undertaking regular speed drills, the "average" reader could, he proposed, easily improve his reading speed by 50 percent. Industrial developments simply required this speeding up of mental processing, he argued, "For man's mind is the most marvelous of all machines. To improve it is to improve all the things it moves and creates."

Streamlining the reading process entailed the correct selection of matter, correct positioning, training the eye to select the important facts on the page, and committing the facts to memory. Building vocabulary was a necessary adjunct to this process, as was training the "eye grasp." Unlike advice in the late-nineteenth century that had condemned "skimming" as lazy and vulgar, Pitkin now counseled that skimming was perfectly acceptable and in many cases beneficial, if done according to the advice of experts. Mental training would unburden the reader from the difficulties associated with long and difficult reading, and speed was now most definitely akin to success. Through a series of exercises—some of which required an assistant with a stopwatch—the book enabled a rough measurement of the speed of reading and comprehension, as well as a measurement of the facts retained. As a layperson's version of psychometric testing, Pitkin's book took experimental psychology out of the laboratory and into the home.

Such homespun versions of psychometric testing proliferated over the 1930s. James Mursell's Streamline Your Mind, published in 1936, advised the reader on how to train for an efficient mind in an everyday environment. Quick and easy tests of mental efficiency could be carried out in the home or the street, and mail order reading tests could now be cheaply purchased on the market. Mursell advised making simple estimates of ability level by comparisons with the speed at which others read in public, such as the movie theater crowd, for example. "Or time yourself on an article or story in Liberty magazine, where the 'reading time' is indicated," he advised. Like Pitkin, his home-based exercises offered cheap and easy remedies to the machine age in a domestic and familiar environment. Not only did Mursell compare the reader to a machine (one that could be efficient or inefficient according to training) but one that operated cinematically:

Behind the lens of a motion-picture projector there is a shutter. This shutter synchronizes with the run of the film so that as each of the tiny pictures comes into position it is released onto the screen for a fraction of a second and then cut off as it slides away to make room for the next. If the shutter stopped working you would not see a series of clean-cut images, but only a moving blur. This is how you must learn to use your mind if you wish to memorize well. You must concentrate on the job, so that you have a series of definite, sharply defined pictures, and not a vague blur shading off into all sorts of irrelevancies. Just as Macfadden advised using the everyday experience of modern technology to improve strength, Mursell saw the mind as something that could be trained using "cinematic" techniques. More than a metaphor, however, by the 1930s, methods of training to speed up reading now involved training "by means of a motion picture technique." Educational psychologist Walter Dearborn described the training as "photographing reading material on motion picture film in such a way that when the film is projected, successive units of the separate lines are seen exposed tachistoscopically across the screen . . . the reader's task . . . is to keep pace with the rate at which he is being directed through the material." As shown in Figure 18.3, this cinematic method offered training
that was “intended to improve reading ability by a type of practice which controls the eye movements of the unskilled reader in accordance with the pattern of the eyes of the skilled reader.”51 From the mechanics of measuring using new technologies, experimental psychologists had evolved “eye training” that would increase and standardize reading speeds at a mechanical rate, controlled by the machine itself.52

Avant-garde literary experiments also played with the possibility of filmed “books,” or “logocinema,” something that literature scholar Michael North describes as “a revolution of the word accomplished quite literally by bringing to language the physical dynamism and energy associated with film.”53 In the early 1930s, American journalist Bob Brown wrote that “modern word-conveyors are needed now, reading will have to be done by machine; microscopic type on a moveable tape running beneath a slot equipped with a magnifying glass and brought up to life size before the reader’s birdlike eye.”54 Brown argued for the necessity of his “Readies” (books projected on moving film) as a way to keep up with “today’s speed.”55

The speeding up of reading may have seemed even more important with the introduction of microfilm technology in 1937, which appeared to turn books into films. The Literary Digest explained how a “full-sized newspaper can be reduced to a foot of movie film” and that the machinery for reading these new texts resembled movie cameras that projected words onto a backlit screen and into the eye.56 Thus by the 1930s, it may certainly have seemed that changes in cultural production had indeed turned books into “machines.” With this process, there seemed no limit to the potential information revolution, to the democratic possibilities of universal knowledge and an ever-increasing need to speed up reading.

Nevertheless, the utopian possibilities of these new technologies also harbored a dark pessimism about the future of language and civilization. The rise of the mental hygiene movement along with fears over personal and economic breakdown made self-improvement and education a panacea for what many saw as an ailing nation. Transforming the way people read was accorded so much importance that educator Irving Anderson wrote that while “This failure to acquire a language background is due partly to low intelligence . . . it is due as much, if not more, to a system of living and education which not only permits but sometimes fosters either verbalistic or imaginary, escape-like adjustments to the realities of everyday life.”57 The link between mental decline and the decline of the state was highlighted to many by the 1929 Wall Street crash and the onset of massive economic depression. If “cultural lag” was responsible for the collapse—as some asserted—the need to streamline the mind in line with technology appeared central to recovery.58 By the end of 1929, Pitkin’s comments, that “The fate of nations hangs on what he reads. So does the stock markets. So does the march of industry and business. So does the progress of education and every larger aspect of social welfare,” may have seemed prophetic indeed.59

The centrality of self-improvement to the wider goals of social harmony and progress was embedded in the goal of rapid reading. The need to understand how the mind could cope with the influx and confusion of perceptions that characterized modernity led to new ways of understanding, and training, the modern mind. To avoid becoming lost in the welter of possible mental fragmentations, streamlined reading became a talisman to ward off the ills of postmodern subjectivity that was signified mostly by the loss of control over language.

Like skyscrapers and Fordism, speed reading is something with a particularly “American” flavor. After the 1930s, speed reading training lost its association with the avant-garde and utopian ideas about the liberatory potential of a “revolution of words.” In the 1950s, speed reading became big business, with reading teacher Evelyn Wood dominating a now highly competitive market with her “Reading Dynamics,” a course that became an international phenomenon.

Methods for training have continued to develop with the unwritten understanding that (modern) speed is better than (Victorian) slowness. Despite the increase of formal education and widening access to learning throughout the nineteenth and twentieth centuries, anxieties over educational standards continue to create a market for mass-market quick-fix solutions to the perception of mental “degeneracy” and educational decline. Self-help books devoted to enhancing the brain and mental efficiency continue to emerge, with titles that evoke the mechanistic imagery that has characterized modern perceptions of the mind: Users Guide to the Brain; Owner’s Manual for the Brain; Brain Building in Just 12 Weeks; Speed Reading; Photoreading; Quantum Learning; Triple Your Reading Speed; Twenty-First Century Guide to Increasing Your Reading Speed; and Mega Speed Reading, to name a few. Further than this, the appearance of new styles of “machines to think with,” along with the mass production of information via computers, have increased anxieties over reading and intelligence/culture while offering solutions to it. Advertisements for speed reading

FIGURE 18.3 Eye training using the motion picture technique, 1938.
software offer faster reactions to faster machines, some now claiming to enable photo reading at 25,000 words a minute. Looking back at the history of such claims, it becomes ever more surprising that such old ideas about efficiency, intelligence, and speed are still sold as modern solutions to the digital age.

Notes

2. The search for a universal form of communication is beyond the subject of this chapter, but along with Richards, writers who also addressed this issue include C. K. Ogden, Ezra Pound, Alfred North Whitehead, Rudolf Carnap, Otto Neurath, and Stuart Chase.

5. Thomas de Quincey, De Quincey’s Writings (Boston: Ticknor, Reed, and Fields, 1856), 38, 44; online at Making of America archive, http://www.hi.umich.edu/moa/grady. Walter Org, in fact, dates concerns that an abundance of books would make men less studious to 1477 and the introduction of the printing press; see his Orality and Literacy: The Technologizing of the Word (London: Methuen, 1982), 79.

8. By the 1890s, writers responded to the idea of an overabundance of culture as a pathological decadence that was undermining civilization. See, for example, Patrick Brattinger, The Reading Lesson: The Threat of Mass Literacy in Nineteenth-Century British Fiction (Bloomington: Indiana University Press, 1998), 192–96. See also chapter 9, “The Overbooked Versus Bootless Futures in Late-Victorian Fiction.”

11. For a study of the fundamental role of perception and attention within modern discourses of art and culture, see Jonathan Crary, Suspensions of Perception: Attention, Spectacle, and Modern Culture (Cambridge, Mass.: MIT Press, 1999).

16. Ibid., 16.

21. James McKeen Carrell, “The Inertia of the Eye and Brain,” Brain 8, no. 3 (1885): 307. See also Crary, Suspensions, 302–22. For a list of useful histories of reading, see Crary, Suspensions, 302–22. For a list of useful histories of reading, see Crary, Suspensions, 302–22.

24. Ibid.

27. Although the literary impact of these studies are beyond the scope of this chapter, it is notable that later modernist visual poetry—from Apollinaire’s calligrammes and Marinetti’s images of onomatopoeic language—bear a striking resemblance to some of the images used in word experiments at this time. See, for example, Joanna Drucker, “Visual Performance of the Poetic Text,” in Close Reading: Poetry and the Performed Word, ed. Charles Bernstein (Chicago: Chicago University Press, 1998), 135–37.

28. Jonathan Crary discusses the modern concern with attention and how failure of attention had become associated with sociopathic behavior; see Suspensions, 1–26.

30. Ibid., 286.

34. At the same time, the constitution of the individual appeared to be a deciding factor on the amount of improvement that was possible. Thus differences in reading were in some way naturalized as inherited rather than learned, despite the fact that improvement presupposed individual betterment. See, for example, claimed that “the mental constitution or type of the individual has...
much to do in deciding the place that each sense shall have in a factor in reading”; see Secor, “Visual Reading,” 225–36.

42. Ibid., 424, 427, 429.

47. Ibid., 31. It is also pertinent to note that magazines now indicated the reading time for their features at the top of the page to enable readers to know how long it should take them to read the feature.

48. Ibid., 156.

50. Ibid., 219.

52. Students “quickly learn to read the film material with exceptional skill” at a rate of five hundred words per minute, Anderson claimed, and the “film technique” method trained them faster than all (Bulletin of the University of Michigan, 29). Speed in reading, and consequently in the abilities of the human mind, would thereby enable the brain to keep pace with technological developments, for “new habits of perceiving and comprehending” at faster speeds were shown to be possible.

53. Michael North, “Words in Motion: The Movies, the Readies, and the Revolution of the Word,” Modernism/Modernity 9, no. 2 (2002): 206. Although North argues convincingly for the influence of cinema on literary invention, the experiments with language and rotating words in experimental psychology illustrate that the revolution of words—in a literal sense—emerged out of the same experiments with time and motion that led to cinema. The possibility of dynamic language was thus already present in technologies of “logocinema” within the laboratories of the experimental sciences, whose experiments with human responses to language had emerged contingently with cinema.

55. Ibid.

